sábado, 19 de febrero de 2011
CREADO POR:
*ALEXIS CHAVERRA
*JORGE ANDRES RAMIREZ
*PAULA ANDREA JARAMILLO
*EDWIN RAMOS
*LEYDI JOHANA OSORIO
*JERRY BEDOYA
*DAVID ECHEVERRY
*ELIANA CAROLINA MUÑOZ
lunes, 26 de octubre de 2009
EL MONITOR Y SUS BLOQUES FUNCIONALES
2)CIRCUITOS OSCILADORES
3)SEÑALES DE VIDEO
4)CONTROL Y MONITORES
1)FUENTE DE PODER
Su funcion es procesar. adecuar y modificar voltajes. rectificacion y voltaje de baja frecuencia, protegen el puente de weasthone en la placa inicial del condensador principal.
Esta compuesto por un circuito de proteccion de voltaje alterna de entrada y salida. contiene 5 elementos:
1-CONDENSADOR CORTAPICOS: permite el paso de la corriente electrica mientras obtiene su capacidad maxima de carga o el equivalente de la fuente de poder.
2-TRANSFORMADOR CHOCKER: recibe un VCA con el fin de convertirlo o transformarlo en otro voltaje de mayor o menor valor de aptitud o voltaje sin cambiar la forma de la onda, ni cambiar el valor de la frecuencia. (elimina corrientes parasitos)
3-RESISTENCIAS:
PTC: positiva cercana a la bobina dezmagnetizadora
NTC: negativa cercana al puente de weasthone
estas son protectoras de la corriente de carga y control del encendido para los circuitos electronicos
4-BOBINA DEZMAGNETIZADORA: causan un fenomeno electronico que consiste en ocacionar un etraso en las conducciones de la corriente electrica. (retarda el paso de la corriente)
5-PUENTE DE WEASTHONE: formado por 4 diodos. es un puente rectificador de onda completa, pasa ondas positivas o negativas para volverla continua.
las tecnologias de las fuentes de poder son:
AT y ATX
Las fuentes de alimentación AT, fueron usadas hasta que apareció el Pentium MMX, es en ese momento cuando ya se empezarían a utilizar fuentes de alimentación ATX.
Las características de las fuentes AT, son que sus conectores a placa base varían de los utilizados en las fuentes ATX, y por otra parte, quizás bastante más peligroso, es que la fuente se activa a través de un interruptor, y en ese interruptor hay un voltaje de 220v, con el riesgo que supondría manipular el PC.
También destacar que comparadas tecnológicamente con las fuentes ATX, las AT son un tanto rudimentarias electrónicamente hablando.
En ATX, es un poco distinto, ya que se moderniza el circuito de la fuente, y siempre está activa, aunque el ordenador no esté funcionando, la fuente siempre está alimentada con una tensión pequeña para mantenerla en espera.
Una de las ventajas es que las fuentes ATX no disponen de un interruptor que enciende/apaga la fuente, si no que se trata de un pulsador conectado a la placa base, y esta se encarga de encender la fuente, esto conlleva pues el poder realizar conexiones/desconexiones por software.
Existe una tabla, para clasificar las fuentes según su potencia y caja.Sobremesa AT => 150–200 W Semitorre => 200–300 W Torre => 230–250 W Slim => 75–100 W Sobremesa ATX => 200–250 W
No obstante, comentar, que estos datos son muy variables, y unicamente son orientativos, ya que varía segun el numero de dispositivos conectados al PC.
Conexión de DispositivosEn Fuentes AT, se daba el problema de que existian dos conectores a conectar a placa base, con lo cual podia dar lugar a confusiones y a cortocircuitos, la solución a ello es basarse en un truco muy sencillo, hay que dejar en el centro los cables negros que los dos conectores tienen, asi no hay forma posible de equivocarse.
En cambio, en las fuentes ATX solo existe un conector para la placa base, todo de una pieza, y solo hay una manera de encajarlo, así que por eso no hay problema
Existen dos tipos de conectores para alimentar dispositivos:
El más grande, sirve para conectar dispositivos como discos duros, lectores de cd-rom, grabadoras, dispositivos SCSI, etc…Mientras que el otro, visiblemente más pequeño, sirve para alimentar por ejemplo disqueteras o algunos dispositivos ZIP.
miércoles, 21 de octubre de 2009
SISTEMAS OPERATIVOS
En todo equipo de cómputo es indispensable que se realice una instalación de sus partes siguiendo las normas y técnicas adecuadas. Los Sistemas Operativos como parte esencial del computador, han evolucionado con el progreso tecnológico del Hardware y el Software; este como parte lógica requiere ser seleccinado acorde a la máquina para un muy buen rendimiento.
Un sistema operativo es un software de sistema, es decir, un conjunto de programas de computación destinados a realizar muchas tareas entre las que destaca la administración de los dispositivos periféricos.
Cuando se aplica voltaje al procesador de un dispositivo electrónico, éste ejecuta un reducido código en lenguaje ensamblador localizado en una dirección concreta en la ROM (dirección de reset) y conocido como reset code, que a su vez ejecuta una rutina con la que se inicializa el hardware que acompaña al procesador. También en esta fase suele inicializarse el controlador de las interrupciones. Finalizada esta fase se ejecuta el código de arranque (startup code), también código en lenguaje ensamblador, cuya tarea más importante es ejecutar el programa principal (main()) del software de la aplicación.
FUNCIONES BÁSICAS
Los sistemas operativos, en su condición de capa software que posibilitan y simplifica el manejo de la computadora, desempeñan una serie de funciones básicas esenciales para la gestión del equipo. Entre las más destacables, cada una ejercida por un componente interno (módulo en núcleos monolíticos y servidor en micronúcleos), podemos reseñar las siguientes:
- Proporcionar más comodidad en el uso de un computador.
- Gestionar de manera eficiente los recursos del equipo, ejecutando servicios para los procesos (programas)
- Brindar una interfaz al usuario, ejecutando instrucciones (comandos).
- Permitir que los cambios debidos al desarrollo del propio SO se puedan realizar sin interferir con los servicios que ya se prestaban (evolutividad).
Un sistema operativo desempeña 5 funciones básicas en la operación de un sistema informático: suministro de interfaz al usuario, administración de recursos, administración de archivos, administración de tareas y servicio de soporte y utilidades.
INTERFACES DEL USUARIO
Es la parte del sistema operativo que permite comunicarse con él, de tal manera que se puedan cargar programas, acceder archivos y realizar otras tareas. Existen tres tipos básicos de interfaces: las que se basan en comandos, las que utilizan menús y las interfaces gráficas de usuario.
ADMINISTRACIÓN DE RECURSOS
Sirven para administrar los recursos de hardware y de redes de un sistema informático, como la CPU, memoria, dispositivos de almacenamiento secundario y periféricos de entrada y de salida.
ADMINISTRACIÓN DE ARCHIVOS
Un sistema de información contiene programas de administración de archivos que controlan la creación, borrado y acceso de archivos de datos y de programas. También implica mantener el registro de la ubicación física de los archivos en los discos magnéticos y en otros dispositivos de almacenamiento secundarios.
ADMINISTRACIÓN DE TAREAS
Los programas de administración de tareas de un sistema operativo administran la realización de las tareas informáticas de los usuarios finales. Los programas controlan qué áreas tienen acceso al CPU y por cuánto tiempo. Las funciones de administración de tareas pueden distribuir una parte específica del tiempo del CPU para una tarea en particular, e interrumpir al CPU en cualquier momento para sustituirla con una tarea de mayor prioridad.
SERVICIO DE SOPORTE
Los servicios de soporte de cada sistema operativo dependerán de la implementación particular de éste con la que estemos trabajando. Entre las más conocidas se pueden destacar las implementaciones de Unix, desarrolladas por diferentes empresas de software, los sistemas operativos de Apple Inc., como Mac OS X para las computadoras de Apple Inc., los sistemas operativos de Microsoft, y las implementaciones de software libre, como GNU/Linux o BSD producidas por empresas, universidades, administraciones públicas, organizaciones sin fines de lucro y/o comunidades de desarrollo.
Estos servicios de soporte suelen consistir en:
*Actualización de versiones.
*Mejoras de seguridad.
*Inclusión de alguna nueva utilidad (un nuevo entorno gráfico, un asistente para administrar alguna determinada función, ...).
*Controladores para manejar nuevos periféricos (este servicio debe coordinarse a veces con el fabricante del hardware).
*Corrección de errores de software.
No todas las utilidades de administración o servicios forman parte del sistema operativo, además de éste, hay otros tipos importantes de software de administración de sistemas, como los sistemas de administración de base de datos o los programas de administración de redes. El soporte de estos productos deberá proporcionarlo el fabricante correspondiente (que no tiene porque ser el mismo que el del sistema operativo).
COMPONENTES DE UN SISTEMA OPERATIVO
GESTIÓN DE PROCESOS
Un proceso es simplemente, un programa en ejecución que necesita recursos para realizar su tarea: tiempo de CPU, memoria, archivos y dispositivos de E/S. El SO es el responsable de:
*Crear y destruir los procesos.
*Parar y reanudar los procesos.
*Ofrecer mecanismos para que se comuniquen y sincronicen.
La gestión de procesos podría ser similar al trabajo de oficina. Se puede tener una lista de tareas a realizar y a estas fijarles prioridades alta, media, baja por ejemplo. Debemos comenzar haciendo las tareas de prioridad alta primero y cuando se terminen seguir con las de prioridad media y después las de baja. Una vez realizada la tarea se tacha. Esto puede traer un problema que las tareas de baja prioridad pueden que nunca lleguen a ejecutarse. y permanezcan en la lista para siempre. Para solucionar esto, se puede asignar alta prioridad a las tareas más antiguas.
GESTIÓN DE LA MEMORIA PRINCIPAL
La Memoria es una gran tabla de palabras o bytes que se referencian cada una mediante una dirección única. Este almacén de datos de rápido accesos es compartido por la CPU y los dispositivos de E/S, es volátil y pierde su contenido en los fallos del sistema. El SO es el responsable de:
*Conocer qué partes de la memoria están utilizadas y por quién.
*Decidir qué procesos se cargarán en memoria cuando haya espacio disponible.
*Asignar y reclamar espacio de memoria cuando sea necesario.
GESTIÓN DE ALMACENAMIENTO SECUNDARIO
Un sistema de almacenamiento secundario es necesario, ya que la memoria principal (almacenamiento primario) es volátil y además muy pequeña para almacenar todos los programas y datos. También es necesario mantener los datos que no convenga mantener en la memoria principal. El SO se encarga de:
*Planificar los discos.
*Gestionar el espacio libre.
*Asignar el almacenamiento.
EL SISTEMA DE E/S
Consiste en un sistema de almacenamiento temporal (caché), una interfaz de manejadores de dispositivos y otra para dispositivos concretos. El sistema operativo debe gestionar el almacenamiento temporal de E/S y servir las interrupciones de los dispositivos de E/S.
SISTEMA DE ARCHIVOS
Los archivos son colecciones de información relacionada, definidas por sus creadores. Éstos almacenan programas (en código fuente y objeto) y datos tales como imágenes, textos, información de bases de datos, etc. El SO es responsable de:
*Construir y eliminar archivos y directorios.
*Ofrecer funciones para manipular archivos y directorios.
*Establecer la correspondencia entre archivos y unidades de almacenamiento.
*Realizar copias de seguridad de archivos.
Existen diferentes Sistemas de Archivos, es decir, existen diferentes formas de organizar la información que se almacena en las memorias (normalmente discos) de los ordenadores. Por ejemplo, existen los sistemas de archivos FAT, FAT32, EXT2, NTFS...
Desde el punto de vista del usuario estas diferencias pueden parecer insignificantes a primera vista, sin embargo, existen diferencias muy importantes. Por ejemplo, los sistemas de ficheros FAT32 y NTFS , que se utilizan fundamentalmente en sistemas operativos de Microsoft, tienen una gran diferencia para un usuario que utilice una base de datos con bastante información ya que el tamaño máximo de un fichero con un Sistema de Archivos FAT32 está limitado a 4 gigabytes sin embargo en un sistema NTFS el tamaño es considerablemente mayor.
SISTEMAS DE PROTECCIÓN
Mecanismo que controla el acceso de los programas o los usuarios a los recursos del sistema. El SO se encarga de:
*Distinguir entre uso autorizado y no autorizado.
*Especificar los controles de seguridad a realizar.
*Forzar el uso de estos mecanismos de protección.
SISTEMA DE COMUNICACIONES
Para mantener las comunicaciones con otros sistemas es necesario poder controlar el envío y recepción de información a través de las interfaces de red. También hay que crear y mantener puntos de comunicación que sirvan a las aplicaciones para enviar y recibir información, y crear y mantener conexiones virtuales entre aplicaciones que están ejecutándose localmente y otras que lo hacen remotamente.
PROGRAMAS DE SISTEMA
Son aplicaciones de utilidad que se suministran con el SO pero no forman parte de él. Ofrecen un entorno útil para el desarrollo y ejecución de programas, siendo algunas de las tareas que realizan:
*Manipulación y modificación de archivos.
*Información del estado del sistema.
*Soporte a lenguajes de programación.
*Comunicaciones.
GESTOR DE RECURSOS
Como gestor de recursos, el Sistema Operativo administra:
*La CPU (Unidad Central de Proceso, donde está alojado el microprocesador).
*Los dispositivos de E/S (entrada y salida)
*La memoria principal (o de acceso directo).
*Los discos (o memoria secundaria).
*Los procesos (o programas en ejecución).
...
*y en general todos los recursos del sistema.
CARACTERÍSTICAS
ADMINISTRACIÓN DE TAREAS
Monotarea: Solamente puede ejecutar un proceso (aparte de los procesos del propio S.O.) en un momento dado. Una vez que empieza a ejecutar un proceso, continuará haciéndolo hasta su finalización y/o interrupción.
Multitarea: Es capaz de ejecutar varios procesos al mismo tiempo. Este tipo de S.O. normalmente asigna los recursos disponibles (CPU, memoria, periféricos) de forma alternada a los procesos que los solicitan, de manera que el usuario percibe que todos funcionan a la vez, de forma concurrente.
ADMINISTRACIÓN DE USUARIOS
Monousuario: Si sólo permite ejecutar los programas de un usuario al mismo tiempo.
Multiusuario: Si permite que varios usuarios ejecuten simultáneamente sus programas, accediendo a la vez a los recursos de la computadora. Normalmente estos sistemas operativos utilizan métodos de protección de datos, de manera que un programa no pueda usar o cambiar los datos de otro usuario.
MANEJO DE RECURSOS
Centralizado: Si permite utilizar los recursos de una sola computadora.
Distribuido: Si permite utilizar los recursos (memoria, CPU, disco, periféricos... ) de más de una computadora al mismo tiempo.
LIMPIEZA DE UNA CPU DE ESCRITORIO
Gran parte de los problemas que se presentan en los sistemas de cómputo se pueden evitar o prevenir si se realiza un mantenimiento periódico de cada uno de sus componentes.
Recuerde que para cualquier labor de mantenimiento se debe utilizar la herramienta adecuada. En cuanto al mantenimiento preventivo, podemos mencionar las siguientes:
*Un juego de atornilladores (Estrella. hexagonal o Torx, de pala y de copa)
Elementos para limpieza externa (Se utilizan para quitar las manchas del gabinete y las demás superficies de los diferentes aparatos)
Juego de herramientas para mantenimiento preventivo:
Existen varios procesos que se deben realizar antes de iniciar un mantenimiento preventivo para determinar el correcto funcionamiento de los componentes. Estos son:
Probar la unidad de disco flexible. Una forma práctica de realizar este proceso es tener un disco antivirus lo más actualizado posible y ejecutar el programa. Esto determina el buen funcionamiento de la unidad y a la vez se verifica que no haya virus en el sistema.
Chequear el disco duro con el comando CHKDSK del DOS. Si se tiene multimedia instalada, puede probarse con un CD de música, esto determina que los altavoces y la unidad estén bien.
Realice una prueba a todos los periféricos instalados. Es mejor demorarse un poco para determinar el funcionamiento correcto de la computadora y sus periféricos antes de empezar a desarmar el equipo.
Debemos ser precavidos con el manejo de los tornillos del sistema en el momento de desarmarlo. Los tornillos no están diseñados para todos los puntos. Es muy importante diferenciar bien los que son cortos de los medianos y de los largos. Por ejemplo, si se utiliza un tornillo largo para montar el disco duro, se corre el riesgo de dañar la tarjeta interna del mismo. Escoja la mejor metodología según sea su habilidad en este campo:
Algunos almacenan lodos los tomillos en un solo lugar, otros los clasifican y otros los ordenan según se va desarmando para luego formarlos en orden contrario en el momento de armar el equipo.
El objetivo primordial de un mantenimiento no es desarmar y armar, sino de limpiar, lubricar y calibrar los dispositivos. Elementos como el polvo son demasiado nocivos para cualquier componente electrónico, en especial si se trata de elementos con movimiento tales como los motores de la unidad de disco, el ventilador, etc.
Todas estas precauciones son importantes para garantizar que el sistema de cómputo al que se le realizará dicho mantenimiento, quede en perfectas condiciones.
MANTENIMIENTO DE LA UNIDAD CENTRAL. MANTENIMIENTO DE LAS TARJETAS PRINCIPAL Y DE INTERFACE
No haga fuerzas excesivas para retirar la tapa de la unidad central. Haga un análisis de la forma en que ésta se encuentra ajustada de tal modo que no se corran riesgos de daño en algún elemento.
El mantenimiento esté funcionando correctamente y adicionalmente, detectar alguna falla que deba corregirse. Con estos procedimientos previos se delimita el grado de responsabilidad antes de realizar el mantenimiento en caso de que algo no funcione correctamente.
El siguiente paso es retirar las tarjetas de interface (video, sonido, fax-módem, etc.). Es muy recomendable establecer claramente la ranura (slot) en la que se encuentra instalada cada una para conservar el mismo orden al momento de insertarlas.
El manejo de las tarjetas electrónicas exige mucho cuidado. Uno de los más importantes es utilizar correctamente una pulsera antiestática con el fin de prevenir las descargas electrostáticas del cuerpo.
Luego se retiran los cables de datos Ribbon) que van desde la tarjeta principal hasta las unidades de disco duro. De disco flexible, de tape backup y de CD-ROM (si los hay) con el objetivo de liberar el espacio para la limpieza de la unidad central. Fíjese muy bien en la conexión de cada cable con el fin de instalarlos en la misma posición. Una buena precaución puede ser elaborar un plano simplificado indicando cada una de las conexiones. Esto sobre todo en equipos con los cuales no esté muy familiarizado.
Recuerde que estos cables tienen marcado el borde que corresponde al terminar número 1 de sus respectivos conectares.
Adicionalmente, se deben retirar los cables de alimentación de la fuente de poder.
Se procede luego a retirar las unidades de disco flexible, de disco duro. El tape backup y de CD-ROM fijándolo en su ubicación y en el tipo de tomillos que militan, generalmente los tornillos cortos corresponden a la unidad de disco duro.
Si después de revisar la unidad central es necesario retirar la tarjeta principal para limpiarla bien o para hacerle mantenimiento a otros elementos, libérela de los tomillos que la sujetan al gabinete. Se debe tener mucho cuidado con las arandelas aislantes que tienen los tomillos ya que éstas se pierden muy fácil. Observe con detenimiento el sentido que tienen los conectores de alimentación de la tarjeta principal ya que si estos se invierten, se pueden dañar sus componentes electrónicos.
Con elementos sencillos como una brocha, se puede hacer la limpieza general de las tarjetas principal y de interface, al igual que en el interior de la unidad.
Para limpiar los contactos de las tarjetas de interface se utiliza un borrador blando para lápiz. Después de retirar el polvo de las tarjetas y limpiar los terminales de cobre de dichas tarjetas, podemos aplicar limpia-contados (dispositivo en aerosol para mejorar la limpieza y que tiene gran capacidad dieléctrica) a todas las ranuras de expansión y en especial a los conectares de alimentación de la tarjeta principal.
Si usted es una persona dedicada al mantenimiento de computadoras, el soplador o blower es una herramienta indispensable para hacer limpieza en aquellos sitios del sistema de difícil acceso. Utilícelo con las computadoras apagadas ya que éste posee un motor que podría introducir ruido sobre la línea eléctrica y generar daños a las máquinas.
LIMPIEZA DE LA FUENTE DE PODER
Antes de proceder con el mantenimiento de la fuente de poder, se deben desconectar todos los cables de alimentación que se estén utilizando. Lo primero que se debe desconectar son los cables que van a la tarjeta principal (recuerde los cuidados en su conexión).
Luego se desconectan todos los periféricos. Los conectores utilizados para el disco duro, la unidad de respaldo en cinta (tape backup), si la hay, la unidad de CD-ROM y la unidad de disco flexible, no tienen un orden especifico en su conexión, cualquiera de los cables puede ir a cualquiera de estas unidades.
Tipos de conectores de la fuente
Una de las partes en donde se acumula más polvo es el ventilador de la fuente de poder. Para eliminarlo, se puede utilizar el soplador o blower sin tener que destapar la unidad. Utilice un destornillador, Para evitar que el ventilador gire creando voltajes dañinos.
¡Recuerde que la unidad central debe citar desenergizada o para mayor seguridad, sin los cables de alimentación¡
Limpieza de la fuente con soplador o blower
Si no se dispone del soplador, se debe destapar la fuente para limpiarla. Es muy importante no perder ningún tornillo y tener claridad sobre el tiempo de garantía de la fuente, ya que después de destaparla se pierde por la rotura del sello de garantía. Para destapar la unidad se puede apoyar sobre la misma carcasa con el fin de no desconectar el interruptor de potencia de la fuente.
La limpieza inferior se puede hacer con una brocha suave. Después de limpiar la fuente de poder, si hubo necesidad de destaparla, procedemos a taparla y ubicarla en su sitio. Utilice los tomillos que corresponden con el fin de evitar daños en la carcasa.
LIMPIEZA DE LA UNIDAD DE DISCO FLEXIBLE
La unidad de disco flexible es uno de los dispositivos de la unidad central que exige más cuidado en el mantenimiento y que más presenta problemas por suciedad en sus cabezas o en sus partes mecánicas. Para retirarla de la carcasa, se debe tener cuidado para que salga sin presión (suavemente). En muchos casos la tapa puede estar floja y se atasca al retirarla.
Debido a la gran cantidad de marcas y modelos de unidades de disco flexible que existen, no hay un procedimiento estándar para destaparlas. Observe bien la forma, en la cual está asegurada y ensamblada su tapa. En algunos modelos tiene un sólo tornillo, en otros dos y en otros el desarme se realiza simplemente a presión con la ayuda de un atornillador o destornillador de pala pequeño.
Este dispositivo tiene partes móviles y muy delicadas. Las cabezas lectoras se desplazan en forma lineal gracias a un mecanismo tipo sinfín el cual debe estar siempre bien lubricado. El daño más común en estas unidades se debe a la falta de mantenimiento, ya que el motor se pega o el desplazamiento se vuelve demasiado lento al aumentar la fricción, ocasionando la descalibración de la unidad.
Otro problema que se presenta es la suciedad de las cabezas lectoras, generada por la utilización de discos viejos o sucios. Además, los disquetes van soltando parte de su recubrimiento al rozar las cabezas de lectura/ escritura. En muchos casos, se puede solucionar este problema por medio de un disco de limpieza, pero en otros casos es necesaria una limpieza más profunda.
Para limpiar las cabezas con el disco especial, aplique en la ventana de éste tres o cuatro gotas del líquido que viene con el disco, o en su defecto, alcohol isopropílico. Insértelo en la unidad y haga girar el motor dando el comando DIR A: Repita el procedimiento dos o tres veces. Esto se debe hacer cuando se arme el equipo.
Para realizar la limpieza manual de la unidad de disco flexible, podemos utilizar cepitas de algodón. Impregne el algodón con alcohol isopropílico (este alcohol es de un alto nivel volátil, lo que garantiza que no quede humedad).
Suavemente, levante un poco la cabeza lectora superior, y con el copito realice la limpieza de las cabezas, Observando detalladamente la cabeza se puede determinar su grado de limpieza.
Se debe tener mucho cuidado con la presión manual que se ejerce sobre la cabeza lectora, hacerlo en forma fuerte la puede dañar!
LIMPIEZA DE UNIDADES DE CD-ROM
Para realizar el mantenimiento a la unidad de CD-ROM, es recomendable utilizar un disco especial de limpieza. Este proceso se hace con el sistema funcionando. Si existe algún problema de lectura, se debe destapar la unidad y limpiar el sistema óptico con alcohol isopropílico.
El disco duro no se debe destapar. Su mantenimiento consiste sólo en limpiar con mucho cuidado la parte exterior y las tarjetas. También se deben ajustar bien sus conectores tanto el de alimentación como el de datos.
MANTENIMIENTO DE LOS PERIFÉRICOS
Después de realizar el mantenimiento a la unidad central, se procede a limpiar los periféricos
Teclado, el monitor, el mouse, las impresoras, etc.
EL TECLADO
El mantenimiento preventivo que se hace a un teclado consiste básicamente en la limpieza exterior, ya que éste acumula bastante suciedad producida por los usuarios y el medio ambiente. Esta limpieza se debe hacer con un compuesto ajaban especial para este propósito, generalmente en forma de crema. Existen espumas que permiten limpiar las teclas sin que se produzca humedad en el teclado lo que podría ocasionar cortocircuitos.
LIMPIEZA EXTERNA DEL TECLADO
Para realizar el mantenimiento interior.
Destapamos con cuidado el teclado, observando la forma como está armado ya que su desarme varía notablemente de una marca a otra. Se debe tener mucho cuidado con los tomillos; estos generalmente vienen en diferentes tamaños y ubicarlos en forma equivocada puede dañar el sistema de cierre.
MANTENIMIENTO DEL MOUSE
El mouse es uno de los accesorios indispensables durante la operación diaria de la computadora. Su funcionamiento normal se altera con frecuencia debido a los residuos de polvo y otras sustancias que, se acumulan en sus diferentes partes, especialmente las móviles, se observan los discos correspondientes al desplazamiento del cursor, los cuales se ensucian y forman una capa que evita que el sistema del fotosensor trabaje correctamente.
Rodillos de desplazamiento
Para la limpieza, destape o desarme el mouse con mucho cuidado. Se observan los rodillos de desplazamiento de la esfera que también deben limpiarse con frecuencia. Estos almacenan el polvo convirtiéndolo en una sustancia pegajosa que impide el movimiento uniforme de los mismos.
La limpieza de los rodillos se puede hacer con un copito humedecido en alcohol isopropílico. Si la suciedad está muy dura o adherida a los rodillos, se puede remover con una cuchilla o un destornillador pequeño teniendo mucho cuidado de no rayar o desalinear dichos rodillos.
Durante la exploración, voluntariamente o accidentalmente puede ocurrir que se hayan desconectado algunos cables. Verifique minuciosamente que cada uno de los conectores esté bien ajustado al dispositivo correspondiente. Revise también la conexión de alimentación para el ventilador del microprocesador. Si éste queda sin corriente, la computadora funcionará bien, pero con el tiempo puede fallar.
SENTIDO DE LOS CONECTORES DE LA TARJETA PRINCIPAL
Si se desconectaron los cables de alimentación de la tarjeta principal, tenga mucho cuidado cuando se haga la nueva conexión. La forma fácil de orientarlos es acomodando los dos conectares de modo que los cables negros queden seguidos y bien acomodados con respecto a los pines de la tarjeta. Una equivocación en esta conexión, daña la tarjeta, conectores de alimentación en la tarjeta principal.
Cuando esté tapando la unidad central, asegúrese de no aprisionar cables entre los bordes de ésta y la tapa. Asimismo, no se debe forzar ningún elemento a que encaje con otro, mejor, retire el elemento y haga una observación general para detectar el problema.
ACTITUDES Y VALORES AL HACER MANTENIMIENTO
*Honesto en la recepción del equipo
*Orden al detectar las características que presente el equipo externamente
*Cumplido en el manejo de las normas de seguridad
*Organizado en su lugar de trabajo
*Cuidadoso en el manejo de la herramienta
*Precavido en el desensamble del equipo de las piezas
*Pulcro en la limpieza de las superficies externas/internas de la CPU
*Creativo en la solución de problemas
*Honesto al ensamblar partes
*Responsable en la entrega en buenas condiciones y a tiempo de la CPU
jueves, 3 de septiembre de 2009
CONCEPTOS BÁSICOS DE ELECTRICIDAD
Las instalaciones eléctricas constituyen una parte importante dentro del normal funcionamiento de los aparatos electrónicos; éstas deben reunir una serie de requisitos con el fin de evitar daños, averías o fallos tanto en las conexiones como en los artefactos.
Antes de poner a prueba cualquier aparato electrónico, es necesario revisar las conexiones para verificar que esté suministrando los voltajes requeridos como una de las normas de seguridad dentro de su óptimo rendimiento.
Otro aspecto importante dentro del proceso de ensamble de equipos de cómputo lo constituyen las herramientas a utilizar, de la selección y manejo de éstas, depende su funcionamiento.
CORRIENTE ALTERNA:
Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinusoidal, puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.
CORRIENTE CONTINUA O DIRECTA:
La corriente continua es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna, en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continua con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.
PILA ELÉCTRICA
Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras de lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo negativo o ánodo y el otro es el polo positivo o cátodo.
BATERÍA
Es el dispositivo que almacena energía eléctrica, usando procedimientos electroquímicos y que posteriormente la devuelve casi en su totalidad; este ciclo puede repetirse por un determinado número de veces. Se trata de un generador eléctrico secundario; es decir, un generador que no puede funcionar sin que se le haya suministrado electricidad previamente mediante lo que se denomina proceso de carga.
ENERGÍA ESTÁTICA
La energía estática es la diferencia de potencial creada por cargas de un mismo signo (positivo o negativo), que no están en movimiento, estas cargas tienen la característica de ordenarse de tal forma que queden lo mas separadas unas de otras por repulsión electrostática.No tiene ninguna utilidad puesto que las corrientes transmitidas por estas son demasiado bajas.
ANATOMÍA DEL RAYO
Cuando se está formando una tormenta, las nubes se cargan eléctricamente, algunas toman cargas positivas y otras cargas negativas debido a la ionización del espacio circundante. La tierra es nuestra referencia y establecemos que tiene un voltaje de cero voltios o voltaje neutral.En la Figura 1 podemos observar que hay tres nubes y la polaridad de la carga de cada una. La atmósfera al buscar un equilibrio produce una descarga eléctrica (que en Panamá llamamos Rayo). Esta descarga es un flujo de electrones que se mueven del punto negativo al punto positivo y puede darse entre las nubes como el Rayo#1, puede darse entre la torre y la nube positiva como vemos en el Rayo#2 o puede darse entre un objeto que sobresalga de la tierra y una nube con carga negativa.
SENTIDO DE LA CORRIENTE
Benjamín Franklin fue el precursor en el estudio de la corriente electrica al descubrir la electricidad a finales del Siglo XIX durante una tormenta eléctrica. Él estableció el concepto de cargas positivas y negativas. Haciendo analogía con los fluidos, asumió que la corriente eléctrica es similar que una corriente de agua que viaja de un lugar a otro. Para Benjamín Franklin, las cargas eléctricas viajan de un punto de mayor potencial a otro punto con menor potencial de la misma forma que el agua en una cascada cae de un punto de mayor altura a un punto de menor altura.Cuando fue descubierto el átomo, en el estudio de éste, los científicos se percataron de la presencia de partículas con carga negativa (los electrones), partículas positivas (los protones) y partículas con carga neutra (neutrones). El modelo del átomo de Bohr establecido en 1913 es el modelo actual del átomo donde el núcleo lo forman los protones y neutrones que son partículas más pesadas, mientras que los electrones orbitan (dan vueltas) alrrededor del núcleo. Sabemos además que los electrones son mucho mas livianos que los protones, por lo tanto, cuando se da el movimiento de cargas electricas serán los electrones los que se mueven de un punto donde hay exceso de electrones hacia un punto donde hay menos electrones, es decir, del polo negativo al polo positivo.Cuando los científicos llegaron a esta conclusión, había un choque con la teoría de Benjamín Franklin, pues él estableció que la corriente se daba del positivo al negativo, mientras que con el nuevo concepto del átomo la corriente viaja del polo negativo al positivo. Esto significaba que el concepto de la corriente era lo contrario de lo que se había pensado. No se podían tirar al cesto de basura todas fórmulas y realizar nuevamente todos los estudios realizados, pues el átomo de Niels Bohr fue presentado en el año 1913 y para ese tiempo ya habían muchas fórmulas en la cabeza de los hombres de ciencia. Para no chocar con los modelos establecidos, se consideró como "Corriente Convencional" la corriente que circula del polo positivo al polo negativo de la batería al pasar por el circuito eléctrico, mientras que la "Corriente Real" se debe al movimiento de los electrones y se da del polo negativo al polo positivo. En resumen, hemos aceptado el modelo de Franklin para el estudio de los circuitos pero sabemos que el sentido de la corriente es contrario puesto que las cargas que se mueven son los electrones por se más livianas.Como sabemos que son los electrones los que producen la corriente, decimos que el Rayo#1 viaja de la nube negativa a la nube positiva. El Rayo#2 viaja de la torre hacia la nube. Éste es el sentido de la corriente porque el rayo se hace más grueso cerca de la nube (como un río) y sus afluentes son menores. El Rayo#3 cae sobre el árbol porque hay varias ramificaciones en la nube que se unen para formar un rayo de la misma forma que varios ríos pequeños se unen para formar un gran río que desemboca en el mar. Hacemos la salvedad que establecemos este modelo en base a los conceptos conocidos hasta ahora, pero si en un futuro cambia el modelo atómico, nuevamente puede cambiar la dirección de la corriente en los circuitos.Para nuestro estudio de protección contra rayos, no es importante que el rayo caiga en la antena, o que suba a partir de ésta. El daño será el mismo puesto que por los circuitos circulará una corriente mucho mayor que la corriente que estableció el ingeniero que diseñó el circuito. Por eso, cuando se da el evento de un descarga eléctrica decimos en Panamá: "Cayó un Rayo" y en tu país no sé si se dice igual.
PROTECCIÓN PARA ANTENAS
Cuando cae un rayo, la corriente buscará el camino más corto para llegar a tierra, entonces debemos ayudar al rayo dándole paso expedito por un camino que le vamos a hacer y evitar que la corriente pase por los equipos.Observamos en la Figura#2 que el pararayos tipo Franklin se instala en la parte más alta de la torre. Este pararayos es una varilla de cobre de 8 pies de largo, se le conecta un cable eléctrico AWG#2 o mayor y debe bajar paralelo a la torre hasta una varilla enterrada en la base de la torre. Observemos que cuando cae el rayo, debe hacerlo en el pararayos (el punto más alto de la torre) y le hemos conectado un cable para dirigir la descarga a tierra (en línea recta). En el panel de alimentación eléctrica AC, también colocamos una varilla a tierra lo cual protegerá el equipo de descargas eléctricas provenientes de las líneas de alimentación eléctrica, pues el rayo no necesariamente debe caer en el pararayos que hemos instalado en nuestra torre.Hay un pararayos que tiene muchas espigas en su extremo más alto. A este se le conoce con el nombre de "disipador". El principio de él es distinto, cuando hay una tormenta eléctrica, el disipador ioniza la atmósfera cercana a la torre y cubre inclusive la casa donde están los equipos. No me ha dado buenos resultados en algunos lugares donde hay muchas tormentas eléctricas porque el disipador desvía el rayo y cae sobre las líneas de tendido eléctrico. Me he dado cuenta de ésto, porque durante la tormenta eléctrica cuando cae el rayo, el transmisor queda "fuera del aire". Cuando voy a reparar el equipo, encuentro daño en la fuente de fuerza, lo cual indica que la descarga entró por la línea eléctrica. Por ahora prefiero el pararayos tipo Franklin.
CONEXIÓN A TIERRA
En la base de la torre y en la caseta del equipo los libros recomiendan enterrar una varilla de 6 u 8 pies de largo. El procedimiento por lo regular se realiza clavando la varilla en la tierra con la ayuda de un mazo. Sin embargo, en los lugares con suelos rocosos esta operación se vuelve casi imposible. En ese caso, usamos un tubo de cobre de 2 pulgadas de diámetro y 6 pies de largo al cual se le introduce sal sin refinar para mejorar la conductividad del suelo rocoso.Preparamos este tubo haciéndole 4 huecos (uno por cada lado) cada 6" de longitud del tubo. En la parte inferior del tubo se aplana o se coloca un tapón fijo mientras que en la parte superior instalamos una tapa removible (llamada registro) donde se introduce sal. Cada 6 meses debemos revisar el nivel de la sal. Si ha bajado, debemos rellenar el tubo. Mi ayudante llama "flauta" a este tipo de tubo y viendo la construcción del tubo, diríamos que tiene toda la razón. También en la parte superior del tubo se coloca una armella de cobre donde se amarra o se suelda con estaño el cable de conección a tierra.Para instalar el tubo, abrimos con herramientas de jardinería y construcción un hueco en el suelo rocoso con una profundidad de 6 pies y un diámetro de 1 pie. Una vez que el tubo se coloca en forma vertical, rellenamos el hueco con la misma piedra mezclada con arena para mejorar la conductividad del suelo que rodea el tubo. Cuando el tubo está enterrado debe salir 2 o 3 pulgadas sobre la superficie del suelo donde tendremos el registro y la conección al cable de tierra.Una vez que el tubo está enterrado, quitamos la tapa removible y se introducen 4 tazas de sal sin refinar por la abertura superior. Esto llenará casi 2 pies de la altura del tubo. Luego se vierte una taza de agua para que la sal se diluya y salga por los agujeros mojando el suelo que rodea la varilla. Repetimos el proceso de introducir la sal y el agua hasta que el nivel de la sal esté 1 pulgada debajo del borde donde está el registro del tubo. Si es muy difícil enterrar el tubo en forma vertical, el tubo puede doblarse en forma de letra "L" y enterrarlo horizontalmente a una profundidad de 1 pie pero siempre dejando la boca del tubo perpendicular a la superficie del suelo y con la tapa de registro visible.
PROTECCIÓN DE LÍNEAS ELÉCTRICAS
Regularmente, en la caja de interruptores para los circuitos (breakers), se hace una conección a tierra, según lo especificado por NEC (National Electric Code) o el "Manual para Instalaciones Eléctricas" establecido por la compañía de distribución eléctrica de su país. (Puede solicitar copia del manual en la compañía que le presta el servicio eléctrico).Sin embargo, a las instalaciones debemos hacer ligeros cambios para proteger nuestros equipos contra rayos. Recordemos que el rayo viaja a 360,000 Km/s (que es la velocidad de la luz). Cuando un objeto viaja a esta velocidad, nos presenta ciertas características no contempladas en la Fisica Clásica, y en este caso, el flujo de electrones presenta cierta inercia. Como la descarga eléctrica tiene una duración de unos cuantos micro-segundos (millonésimas de segundo), podemos aprovecharnos de la inercia y hacer que el rayo pierda suficiente energía antes de llegar a nuestro equipo. Recordemos que la descarga viajará en línea recta y si damos varias vueltas a los cables, la descarga producto del rayo perderá energía con cada cambio de dirección.Tomemos por ejemplo, la Figura#4, donde podemos ver que la alimentación eléctrica proveniente de la compañía de distribución entra al interruptor principal, luego llevamos la electricidad en una tubería PVC por el piso hasta llegar al protector de línea AC. Luego regresamos por el piso hasta el regulador de voltaje (si hay problemas de subida y bajada del voltaje donde están los transmisores). Del regulador de voltaje, pasamos al panel de interruptores breakers y es en este lugar donde colocamos la varilla de conección a tierra. Del panel de los breakers destinamos un circuito al transmisor, otro para los equipos de enlace, otro para los tomacorrientes, otro para la iluminación del local y finalmente otro circuito para el sistema de iluminación de la torre.Con todas estas vueltas, la descarga eléctrica del rayo tiene que llegar muy debilitada al equipo, pues el protector de línea tiene entre otros componentes los MOV (Metal Oxide Varistor), en el regulador de voltaje también hay los MOV y en la entrada de alimentación eléctrica del transmisor también hay MOV. Los MOV son dispositivos semiconductores que eliminan los picos de voltaje por encima del valor especificado. Para la instalación eléctrica en el local del transmisor, usamos MOVs con voltaje límite de 275 Volts puesto que los 240Vac no le harán efecto. Sin embago, un voltaje mayor será absorbido por el MOV.
EXCESO DE TIERRA
En los estudios, donde hay equipos de audio, debemos instalar un solo ground interconectando todas las varillas de conección a tierra con un cable de cobre tamaño AWG#8. Con esto evitamos un zumbido de 60Hz de baja intensidad llamado Hum y que se produce cuando hay dos conecciones a tierra en puntos distintos. El nivel de este hum es muy bajo (menos de 50dB por debajo del nivel normal de audio) pero es audible cuando en la emisora el equipo está encendido y no hay música. Muchas veces se oye el zumbido cuando termina el disco y queda un espacio de tiempo antes del bloque de comerciales.
LA UPS
(Uninterruptible Power Supply - Sistema de alimentación ininterrumpida). Un UPS es una fuente de suministro eléctrico que posee una batería con el fin de seguir dando energía a un dispositivo en el caso de interrupción eléctrica. Los UPS son llamados en español SAI (Sistema de alimentación ininterrumpida).
Los UPS suelen conectarse a la alimentación de las computadoras, permitiendo usarlas varios minutos en el caso de que se produzca un corte eléctrico. Algunos UPS también ofrecen aplicaciones que se encargan de realizar ciertos procedimientos automáticamente para los casos en que el usuario no esté y se corte el suministro eléctrico.
Tipos de UPS
SPS (standby power systems) u off-line: un SPS se encarga de monitorear la entrada de energía, cambiando a la batería apenas detecta problemas en el suministro eléctrico. Ese pequeño cambio de origen de la energía puede tomar algunos milisegundos.
UPS on-line: un UPS on-line, evita esos milisegundos sin energía al producirse un corte eléctrico, pues provee alimentación constante desde su batería y no de forma directa. El UPS on-line tiene una variante llamada by-pass.
Componentes típicos de los UPS
Rectificador: rectifica la corriente alterna de entrada, proveyendo corriente continua para cargar la batería. Desde la batería se alimenta el inversor que nuevamente convierte la corriente en alterna. Cuando se descarga la batería, ésta se vuelve a cargar en un lapso de 8 a 10 horas, por este motivo la capacidad del cargador debe ser proporcional al tamaño de la bateria necesaria.
Batería: se encarga de suministrar la energía en caso de interrupción de la corriente eléctrica. Su capacidad, que se mide en Amperes Hora, depende de su autonomía (cantidad de tiempo que puede proveer energía sin alimentación).
Inversor: transforma la corriente continua en corriente alterna, la cual alimenta los dispositivos conectados a la salida del UPS.
Conmutador (By-Pass) de dos posiciones, que permite conectar la salida con la entrada del UPS (By Pass) o con la salida del inversor.
EL MULTÍMETRO
Un multímetro, también denominado polímetro o tester, es un instrumento de medida que ofrece la posibilidad de medir distintos parámetros eléctricos y magnitudes en el mismo aparato. Las más comunes son las de voltímetro, amperímetro y óhmetro. Es utilizado frecuentemente por personal en toda la gama de electrónica y electricidad.
Como medir con el multímetro digital:
- Midiendo voltajes:
Para medir una tension, colocaremos las bornas en las clavijas , y no tendremos mas que colocar ambas puntas entre los puntos de lectura que queramos medir. Si lo que queremos es medir voltaje absoluto, colocaremos la borna negra en cualquier masa (un cable negro de molex o el chasis del ordenador) y la otra borna en el punto a medir. Si lo que queremos es medir diferencias de voltaje entre dos puntos, no tendremos mas que colocar una borna en cada lugar.
El procedimiento para medir una resistencia es bastante similar al de medir tensiones. Basta con colocar la ruleta en la posicion de Ohmios y en la escala apropiada al tamaño de la resistencia que vamos a medir. Si no sabemos cuantos Ohms tiene la resistencia a medir, empezaremos con colocar la ruleta en la escala mas grande, e iremos reduciendo la escala hasta que encontremos la que mas precisión nos da sin salirnos de rango.
- Midiendo intensidades:
El proceso para medir intensidades es algo mas complicado, puesto que en lugar de medirse en paralelo, se mide en serie con el circuito en cuestión. Por esto, para medir intensidades tendremos que abrir el circuito, es decir, desconectar algún cable para intercalar el tester en medio, con el proposito de que la intensidad circule por dentro del tester. Un tester con las bornas puestas para medir intensidades tiene resistencia interna casi nula, para no provocar cambios en el circuito que queramos medir.a
Para medir una intensidad, abriremos el circuito en cualquiera de sus puntos, y configuraremos el tester adecuadamente (borna roja en clavija de Amperios de mas capacidad, 10A en el caso del tester del ejemplo, borna negra en clavija comun COM).
Una vez tengamos el circuito abierto y el tester bien configurado, procederemos a cerrar el circuito usando para ello el tester, es decir, colocaremos cada borna del tester en cada uno de los dos extremos del circuito abierto que tenemos. Con ello se cerrara el circuito y la intensidad circulará por el interior del multimetro para ser leída.
VIDA ÚTIL DE LOS PC`s
viernes, 28 de agosto de 2009
ARQUITECTURA INTERNA DE LOS PC PORTÁTILES
La computadora portátil posee un teclado y una pantalla incorporados. Esto elimina los cables para conectar estos Elementos.
Su gran ventaja reside en la movilidad que los mismos permiten, ya que podrás llevar tu computadora a donde quieras. Las computadoras portátiles también pueden realizar las mismas funciones que cualquier otra computadora.
La primera computadora portátil considerada como tal fue la Epson HX-20 desarrollada en 1981, a partir de la cual se observaron los grandes beneficios para científicos, militares, empresarios y otros profesionales que vieron la ventaja de poder llevar consigo su computadora (ya sea al trabajo, a su casa o a cualquier otro lugar) con toda la información que necesitaban.
La Osborne 1 salió al mercado comercial con el formato que actualmente las distingue, aunque entonces eran sumamente limitadas, incluso para la tecnología de la época.
En 1991 Apple sacó su modelo de portátil, que se convirtió en el estándar para el resto que han salido al mercado desde entonces. En 1995, con la llegada de Windows 95, la venta de laptops se incrementó notablemente, en la actualidad rebasa la ventas de PC de escritorios.
En el tercer trimestre de 2008, las ventas de laptops superaron por primera vez las de las PC de escritorio, según la firma de investigación iSuppli Corp.
- CPU de bajo consumo: Intel Pentium M o AMD Turion.
- Disco duro de 2,5 pulgadas o menor, frente a los discos de 3,5 pulgadas de las computadoras de escritorio.
- Módulos de memoria RAM SO DIMM (Small Outline DIMM) más pequeños que los DIMM usuales en las computadoras de escritorio.
- Unidad lectora y grabadora de CD o DVD de formato reducido.
- Teclado integrado.
- Pantalla integrada tipo TFT o WXGA que a su vez realiza la función de tapa del portátil facilitando su transporte.
- Panel táctil touchpad o trackpad para manejar el puntero en lugar del mouse.
- Cargador (se pueden cargar en uso para optimizar tiempo y energía).
- Por lo general funcionan empleando una batería o un adaptador AC/DC que permite tanto cargar la batería como dar suministro de energía.
- Suelen poseer una pequeña batería que permite mantener el reloj y otros datos en caso de falta de energía.
- En general, a igual precio, las notebooks suelen tener menos potencia que las computadoras de escritorio, incluyendo menor capacidad de sus discos duros, menos poder de video y audio, y menor potencia en sus microprocesadores. De todas maneras, suelen consumir menos energía y son más silenciosas.
- Suelen contar con una pantalla LCD y un touchpad.
- En general cuentan con PC Card (antiguamente PCMCIA) o ExpressCard para tarjetas de expansión.
- Existe un tipo de notebooks llamadas subnotebooks, que son más pequeñas y más livianas.
- No hay todavía un factor de forma industrial estándar para las notebook, es decir, cada fabricante tiene su propio diseño y construcción de éstas. Esto incrementa los precios de los componentes en caso de que haya que reemplazarlos o repararlos, además de hacerlos más difíciles de conseguir. Incluso a menudo existen incompatibilidades entre componentes de notebooks de un mismo fabricante.
La Computadora Cuaderno:
La Computadora Sub Cuaderno:
La Micro Computadora de Bolsillo:
Laptop:

La Computadora portátil puede funcionar mediante una toma eléctrica o batería.
Las Baterías
Permiten utilizar la computadora portátil cuando no haya tomas eléctricas disponibles.
Los Adaptadores de Corriente Alterna
Cuando una computadora portátil se alimenta por medio de una toma eléctrica, un adaptador de corriente alterna transforma la electricidad de la casa en una forma que la computadora portátil pueda usar. Algunas portátiles tienen un adaptador de corriente alterna incorporado en su interior.
Las Baterías Recargables
Su carga útil dura solo unas cuantas horas, es posible recargarlas en un tiempo relativamente corto. Los fabricantes, recomiendan llevar una batería extra si el usuario opera una PC portátil durante un viaje, de manera que pueda trabajar por un periodo de tiempo mayor.
El Control de Carga de las Baterías
La mayoría de las portátiles despliegan en la pantalla la cantidad de energía disponible.
LAS BATERIAS DE NIQUEL-CADMIO (NiCd):
LAS BATERIAS DE HIDRIDO DE NIQUEL (NIMH):
LAS BATERIAS DE IONES DE LITIO:
Cómo y cuándo debe cargarse la Batería
Todas las baterías de las portátiles son recargables. Se cargan cuando está conectada la computadora o el adaptador/cargador a la corriente aún con la computadora apagada. El tiempo de carga es en promedio de 6 horas con la computadora apagada y de 10 horas cuando está encendida. No se recomienda sobrepasar estos tiempos. Tampoco es recomendable usar siempre la computadora conectada, pues de esa forma la pila siempre está cargada y es posible que las baterías se dañen pues las reacciones químicas no se llevan a cabo. La duración de las baterías va disminuyendo con el tiempo de modo que su vida útil fluctúa entre 2 y 4 años.
La mayoría de los adaptadores pueden conectarse a 120 o 240 volts, por lo que pueden usarse en lugares donde la señal eléctrica es de 240 volts.
LAS RANURAS PC
Estas ranuras sirven para alojar la tarjeta de red o para conectar accesorios como las tarjetas que se utilizan en las cámaras digitales.
Las ranuras PC se manejan por tipos que se relacionan con el grosor del dispositivo. Las ranuras de tipo II son para tarjetas delgadas y las de tipo III son para tarjetas más gruesas.
Es importante saber que si una computadora cuenta con dos ranuras de tipo II, es como si automáticamente tuviera una del tipo III porque al ingresar una tarjeta que sea más gruesa que una de las ranuras utilizará las dos ranuras del tipo II.
LAS TARJETAS PC
La Tarjeta PC es un dispositivo semejante a una tarjeta de crédito, que le permite adicionar nuevos elementos a su computadora portátil.
La adición de nuevos elementos a una portátil le agrega peso y ocupa espacio. Para resolver este problema la Asociación Internacional de Memoria para Computadoras Personales (PCMCIA) ha diseñado la tarjeta PC, para agregar nuevos elementos a las computadoras portátiles. A las tarjetas PC también se le llama la tarjeta PMCIA.
- Capacidad del Modulador Demodulador (Módem)
- Las Capacidades de las Redes
- Espacio Adicional del Disco Duro
- Sonido con Calidad Digital
Podemos insertar una tarjeta PC dentro de una ranura PC. Las mayorías de las computadoras portátiles poseen dos receptáculos que aceptan tarjetas PC.
Esto le permite insertar:
Dos tarjetas tipo I, o
Dos tarjetas tipo II, o
Una tarjeta tipo III.
Los Tipos de Tarjetas PC
El Tipo I: De 3,3 mm de espesor, esta tarjeta PC se utiliza para agregar memoria a la portátil.
El tipo II: De 5,0 mm de espesor esta tarjeta PC se utiliza para agregar a la portátil capacidad de móden, capacidades de red o sonido de calidad digital.
El Tipo III: De 10,5 mm de espesor, esta tarjeta PC se utiliza para agregar dispositivos más grandes tales como unidades de disco duro removibles.
DISPOSITIVOS DE ENTRADA Y DE SALIDA
El Teclado
Existen ciertos aspectos que se deben considerar al comprar una portátil, por ejemplo su tamaño, calidad y por lo general su teclado. No es conveniente adquirir portatátiles con teclados pequeños. La mayoría de los capturistas deben ser capaces de poner sus dedos cómodamente en cada tecla.
Los Dispositivos Apuntadores
Existen varios dispositivos que le permiten desplazar el apuntador del mouse a lo largo y ancho de la pantalla.
- La Varita Apuntadora: Muchas computadoras portátiles poseen un dispositivo pequeño, parecido a un borrador que usted presiona, en diferentes direcciones para mover el apuntador en la pantalla.
- El Mouse Estacionario o de Bola de Guía: El mouse de bola de guía es un dispositivo que permanece estacionario. Usted gira la bola con sus dedos o con la palma de la mano, para desplazar el apuntador del mouse en la pantalla.
- Almohadilla Táctil: La almohadilla táctil es una superficie sensible al movimiento y a la presión. Usted desplaza la punta de su dedo a lo largo y ancho de la almohadilla para controlar el apuntador del mouse en la pantalla.
- El Mouse: Es un dispositivo manual. Cuando usted desplaza el mouse sobre una superficie plana, el apuntador del mouse en la pantalla, se desplaza en esa misma dirección.
El Módem:
Módem proviene de las palabras modulador/demodulador. Para que un módem pueda enviar datos a través de una línea telefónica, este debe de modular la señal, transformándola a señal de onda (señal analógica). Esta onda viaja al módem de destino en donde es demodulada a datos digitales. Hablando específicamente de portátiles podemos distinguir dos tipos de módems: los internos y los PC Card (ó Módems PCMCIA).
Los módems internos vienen ya sea incorporados al mother board o pueden ser adquiridos como kits de opcionales para modelos específicos, estos tienen conectores telefónicos tipo RJ-11 ya incluidos.
Los módems PCMCIA son tipo tarjeta de crédito que son insertados en las ranuras PCMCIA estándar de las portátiles actuales.
DISPOSITIVOS DE ALMACENAMIENTO
La Unidad de Disco Duro
Es el dispositivo primario que una computadora portátil utiliza para almacenar programas e información. La mayoría de las portátiles deben tener por lo menos una capacidad de espacio para almacenamiento de 10 GB.
Los discos duros contienen discos o platos de metal reforzado con una cubierta magnetizada. Cuando los discos están trabajando, las cabezas de lectura-escritura avanzan al centro del disco y regresan, magnetizando la superficie, y almacenando ceros y unos como datos. Entre más discos tenga es mayor la capacidad de almacenamiento. Cada disco tiene sus propias cabezas de lectura-escritura. Los datos son almacenados en pistas concéntricas, los cuales se dividen en sectores.
La Unidad de Diskette
La unidad de lectura del disco flexible, floppy, o disquete suele venir integrada en la computadora. Algunos modelos manejan esta unidad de forma separada. Los inconvenientes de manejarla así son que la unidad requiere mayor cuidado y corre el peligro de extraviarse.
La Unida de CD-ROM
La unidad de lectura del disco compacto, CD-ROM, al igual que la de disquete, puede venir integrada en la computadora o no; también requiere de los mismos cuidados que una unidad de disquete separada de la computadora.
EL PROCESAMIENTO
Los Procesadores
La unidad central de procesamiento (CPU) es el circuito más importante de una computadora portátil. Este ejecuta cálculos y procesa instrucciones.
Pocos fabricantes especifican si la portatil contiene un procesador especial para portátil o un chip para computadoras de escritorio. Existe una gran diferencia entre estos dos tipos de procesadores: en su desempeño y la manera en que administran la energía.
La Memoria
Las computadoras necesitan almacenar datos temporalmente para usarlos en ciertas aplicaciones. Esto es a través de dos tipos de memoria, caché y de sistema. Ambos tipos de memoria RAM dependen de capacitores y transistores internos que almacenan valores binarios de ceros y unos y ambos tipos son volátiles, lo cual significa que los datos almacenados en ellas desaparecen al momento en que es apagada la computadora.
La memoria Flash es un tipo de memoria reescribible de estado sólido no volátil que funciona ya sea como disco duro o memoria. Esto significa que los datos son almacenados en celdas de memoria, tipo DRAM, pero también trabaja como disco duro ya que cuando la computadora es apagada, los datos permanecen. Actualmente, los usos de Memoria Flash se están incrementando rápidamente en cámaras digitales, Asistentes Digitales Portátiles, reproductores de música digital o teléfonos celulares.
La memoria cache RAM es un buffer inteligente que usa un algoritmo para almacenar datos que pueden ser usados en cualquier momento, sobre todo en instrucciones usadas frecuentemente. La memoria cache L1 (Level 1) esta localizada en el procesador, mientras que la memoria cache L2 (Level 2) es externa y se usa para almacenar otros datos menos importantes que L1. La memoria cache L2 es menos selectiva y tiene que ser mayor (256K o 512K) en portátiles recientes.
LAS CONEXIONES
Las Conexiones de Dispositivos a una Portátil
El Puerto del Monitor: Es donde se conecta un monitor tamaño normal.
El Puerto Paralelo: Se conecta la impresora o la unidad de cinta.
El puerto Serial: Es donde conectamos el explorador, el módem o el mouse.
El Puerto PS/2: Conecta un teclado de tamaño normal, o un mouse.
El Puerto Replicador de Puertos: Conecta a un replicador de puerto
Puerto USB: El Universal Serial Bus (USB) es una de las maneras más eficientes de agregar dispositivos externos a una portátil. Virtualmente todas las portátiles nuevas tienen uno o dos puertos USB.El USB permite conectar en cadena hasta 127 periféricos.
El Puerto Infrarrojo: Para transmitir datos digitales binarios a través de un rayo de luz infrarrojo (IR), los datos deben ser antes modulados.
Estaciones Base: Para algunos las portátiles pueden ser el sustituto ideal de las computadoras de escritorio. Si usted no necesita una computadora super poderosa, una portátil es una opción económica para usuarios móviles o estacionarios. Para que usted no pierda tiempo conectando y desconectando su portátil de los puertos periféricos como el mouse, la impresora o el monitor, usar un port replicator, mini dock, o estaciones base es buena opción.
MICROPROCESADORES RECOMENDADOS PARA PC´s PORTÁTILES
Intel Celeron M340
Intel Celeron D355
AMD Sempron M3400+
AMD Sempron 3600+
Intel Core Solo T1400
Intel Pentium D8xx
AMD Turion 64 MT40
AMD Athlon 64 3800+
Intel Core Centrino 780
Intel Pentium XE955
Intel Core DUO T2600
AMD Athlon 64 FX60
AMD Turion 64x2 TL60
Intel Pentium D9xx
AMD Athlon 64X2 4800+